Engineering & Mining Journal

JAN 2014

Engineering and Mining Journal - Whether the market is copper, gold, nickel, iron ore, lead/zinc, PGM, diamonds or other commodities, E&MJ takes the lead in projecting trends, following development and reporting on the most efficient operating pr

Issue link: https://emj.epubxp.com/i/239773

Contents of this Issue

Navigation

Page 45 of 83

MINE & PLANT DESIGN "Intelligent mining," said McHattie, "implies the application of information technology at every phase of the mining value chain, from exploration and geological modeling to equipment, operations and maintenance, and logistics and transportation. These are really industry-specific, enterprise-class software solutions focused on using information technology to support the business processes of mining and make them more efficient and effective. "Overlaying the physical world with the digital or virtual world enables us to model and simulate our assets, giving us the ability to effectively design, build, and ultimately optimize the performance and reliability of our assets throughout the lifecycle. The digital asset, often a 3-D model, is created initially during the engineering and construction phase, and is handed over to the operator before the mine goes into operation. Combined with geospatial or geographic information systems, the operator has a complete digital representation of the physical world, which forms the foundation for risk and performance management, along with compliance and regulatory reporting. "But," she continued, "consider that once the mine is in operation, it throws off an endless stream of data in the form of performance and condition data from sensors and monitoring devices on fixed and mobile assets through networks, servers and services. This 'Big Data' can be processed and analyzed to spot trends, help predict events, and formulate reliability strategies as early as the design stage (e.g., reliability centered design). "Intelligent mining," McHattie concluded, "implies that massive amounts of data augment the reality of the physical mine, plant and equipment. This embedded intelligence can be used to optimize operational efficiency, increase asset availability and utilization, improve safety and environmental integrity, and maximize return on investment. Asset Optimization: Lessons to be Learned Using Big Data as a management cornerstone makes subsequent asset optimization efforts easier and more effective, according to Schneider Electric's Greg Johnson, senior manager, Operations Optimization at the company's Mining & Metals Center of Excellence, who addressed the topic last year with a presentation titled Asset Optimization Systems: Five Lessons from 44 E&MJ; • JANUARY 2014 10 Years in Mining, also at the World Mining Congress. As Johnson pointed out, mining has its own unique set of problems: "Mining companies are continually looking for ways to use information and systems to address these issues, but typically face problems of many disparate pieces of information, data duplication and time wastage in data gathering and a lack of a global perspective on plant information trends." Johnson cited a recent typical review at a mining operation, where problems in the operational systems landscape were identified as: • The software applications landscape is complex and fragmented; • There are significant data quality issues; • Considerable effort is spent moving data between applications; and • Access to data is neither timely nor easy. Asset performance is critical to production output, energy efficiency, recovery, environmental performance and schedule performance, according to Johnson, who went on to explain that "while it is possible and indeed necessary to work on the overall information systems architecture, the one system that can provide immediate benefits across the complete mining supply chain is the asset optimization system." Johnson said good asset optimization "ensures the mine or plant is operating at its peak efficiency by identifying where, how and why production losses are occurring. By reporting scheduled and unscheduled events, as well as underperforming equipment, the system enables a complete analysis of causes of losses. This gives you the information you need to prioritize maintenance, improve operating procedures and prioritize capital expenditure." Johnson's five lessons for achieving success with asset optimization are these: • An asset optimization system is not just a "fault recording system," but also an identifier of business improvement opportunities. • Spreadsheets, the traditional tool for recording production-related events, do not work sustainably. Some of the most common problems encountered with spreadsheets are manual entry errors, version control, lack of transparency, and no audit trail for manual changes. • When implementing asset optimization, take the opportunity to re-integrate the production, maintenance and energy departments. • Advanced planning and scheduling will not work without reliable capability. While new tools incorporating the latest optimization methods are available to globally optimize schedules, these tools will be less than successful if the assets in the supply chain do not perform reliably. • New technology can do many things; technology is easy, but organizational change is hard. Implementation of an asset optimization system will change work practices in the organization. There is a need to invest solidly in change management. Leading miners, said Johnson, are now extending asset optimization systems up and downstream, to provide information on the bottlenecks and losses in the entire mining delivery chain. With a consistent process and consistent system across the value chain, operators, engineers and managers can start identifying and implementing the next round of improvements and productivity gains. As additional confirmation of this trend, GE Software, which offers predictive analytics software solutions to many industrial sectors, recently reported that Teck Resources and Hatch shared their views of Big Data for mining at GE's Mines+Machines 2013 summit, an annual conference held by the company to discuss developments in the Industrial Internet. Mike Bonneau, general manager for operational excellence at Teck Resources, said, "Our haul trucks have more than 200 different sensors on them, and we've had that capability for the last 15–20 years, but we really haven't taken full advantage of all the data that's coming off those pieces of equipment." Looking ahead, Bonneau saw an opportunity to harness the data to improve reliability and operations uptime and cut maintenance costs. "Ideally we want to establish a culture of continuous improvement across our entire organization," he said. Similarly, GE customer and partner Hatch sees business transformation ahead for its own operations and for its consulting customers in the mining space. Hatch worked with GE to develop Proficy MaxxMine, a GE solution for mining companies. According to Bruce MacKay, Hatch's managing director for systems and process control, "If you have the MaxxMine solution… somebody is keeping an eye on things for you and can identify where the problem might be and what to do about it…. It allows the clients to plan ahead, the downtime can be organized so that it doesn't cost a lot, and they can minimize any impact to their production schedule." www.e-mj.com

Articles in this issue

Links on this page

Archives of this issue

view archives of Engineering & Mining Journal - JAN 2014